Assignment 6

Coverage: 15.8 in Text.
Exercises: 15.8. No 1, 3, 7, 9, 12, 14, 15, 16, 19, $20,27$.
Submit no. 7, 9, 12, 16, 19 by March 7. Yes , March 7.

Supplementary Problems

1. Find the volume of the ball $x^{2}+y^{2}+z^{2}+w^{2} \leq R^{2}$ in \mathbb{R}^{4} by the formula

$$
\mathrm{vol}=\int_{-R}^{R}\left|B_{w}\right| d w
$$

where $\left|B_{w}\right|$ is the volume of the cross section of the ball at height w. The answer is $\pi^{2} R^{4} / 2$.
2. Let D be a plane region in the plane unchanged under the map $(x, y) \mapsto(-x,-y)$. Show that

$$
\iint_{D} f(x, y) d A(x, y)=0
$$

when f is odd, that is, $f(-x,-y)=-f(x, y)$ in D. This problem has appeared in a previous exercise. Now you are asked to apply the change of variables formula in two dimension.
3. The rotation by an angle θ in anticlockwise direction is given by $(x, y)=(\cos \theta u-$ $\sin \theta v, \sin \theta u+\cos \theta v)$. Verify that rotation leaves the area unchanged.
4. Consider the map $(u, v) \mapsto(x, y)=\left(u^{2}, v\right)$ which maps the square $R_{1}=[-1,1] \times[0,1]$ onto $R_{2}=[0,1] \times[0,1]$. Show that in general

$$
\iint_{R_{2}} f(x, y) d A(x, y) \neq \iint_{R_{1}} f\left(u^{2}, v\right)\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A(u, v) .
$$

(Hint: It suffices to take $f(x, y) \equiv 1$.) Why?

